home *** CD-ROM | disk | FTP | other *** search
/ IRIX 6.2 Development Libraries / SGI IRIX 6.2 Development Libraries.iso / dist / complib.idb / usr / share / catman / p_man / cat3 / complib / zsprfs.z / zsprfs
Text File  |  1996-03-14  |  5KB  |  133 lines

  1.  
  2.  
  3.  
  4. ZZZZSSSSPPPPRRRRFFFFSSSS((((3333FFFF))))                                                          ZZZZSSSSPPPPRRRRFFFFSSSS((((3333FFFF))))
  5.  
  6.  
  7.  
  8. NNNNAAAAMMMMEEEE
  9.      ZSPRFS - improve the computed solution to a system of linear equations
  10.      when the coefficient matrix is symmetric indefinite and packed, and
  11.      provides error bounds and backward error estimates for the solution
  12.  
  13. SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
  14.      SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
  15.                         BERR, WORK, RWORK, INFO )
  16.  
  17.          CHARACTER      UPLO
  18.  
  19.          INTEGER        INFO, LDB, LDX, N, NRHS
  20.  
  21.          INTEGER        IPIV( * )
  22.  
  23.          DOUBLE         PRECISION BERR( * ), FERR( * ), RWORK( * )
  24.  
  25.          COMPLEX*16     AFP( * ), AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
  26.  
  27. PPPPUUUURRRRPPPPOOOOSSSSEEEE
  28.      ZSPRFS improves the computed solution to a system of linear equations
  29.      when the coefficient matrix is symmetric indefinite and packed, and
  30.      provides error bounds and backward error estimates for the solution.
  31.  
  32.  
  33. AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
  34.      UPLO    (input) CHARACTER*1
  35.              = 'U':  Upper triangle of A is stored;
  36.              = 'L':  Lower triangle of A is stored.
  37.  
  38.      N       (input) INTEGER
  39.              The order of the matrix A.  N >= 0.
  40.  
  41.      NRHS    (input) INTEGER
  42.              The number of right hand sides, i.e., the number of columns of
  43.              the matrices B and X.  NRHS >= 0.
  44.  
  45.      AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
  46.              The upper or lower triangle of the symmetric matrix A, packed
  47.              columnwise in a linear array.  The j-th column of A is stored in
  48.              the array AP as follows:  if UPLO = 'U', AP(i + (j-1)*j/2) =
  49.              A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) =
  50.              A(i,j) for j<=i<=n.
  51.  
  52.      AFP     (input) COMPLEX*16 array, dimension (N*(N+1)/2)
  53.              The factored form of the matrix A.  AFP contains the block
  54.              diagonal matrix D and the multipliers used to obtain the factor U
  55.              or L from the factorization A = U*D*U**T or A = L*D*L**T as
  56.              computed by ZSPTRF, stored as a packed triangular matrix.
  57.  
  58.  
  59.  
  60.  
  61.  
  62.  
  63.                                                                         PPPPaaaaggggeeee 1111
  64.  
  65.  
  66.  
  67.  
  68.  
  69.  
  70. ZZZZSSSSPPPPRRRRFFFFSSSS((((3333FFFF))))                                                          ZZZZSSSSPPPPRRRRFFFFSSSS((((3333FFFF))))
  71.  
  72.  
  73.  
  74.      IPIV    (input) INTEGER array, dimension (N)
  75.              Details of the interchanges and the block structure of D as
  76.              determined by ZSPTRF.
  77.  
  78.      B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
  79.              The right hand side matrix B.
  80.  
  81.      LDB     (input) INTEGER
  82.              The leading dimension of the array B.  LDB >= max(1,N).
  83.  
  84.      X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
  85.              On entry, the solution matrix X, as computed by ZSPTRS.  On exit,
  86.              the improved solution matrix X.
  87.  
  88.      LDX     (input) INTEGER
  89.              The leading dimension of the array X.  LDX >= max(1,N).
  90.  
  91.      FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  92.              The estimated forward error bound for each solution vector X(j)
  93.              (the j-th column of the solution matrix X).  If XTRUE is the true
  94.              solution corresponding to X(j), FERR(j) is an estimated upper
  95.              bound for the magnitude of the largest element in (X(j) - XTRUE)
  96.              divided by the magnitude of the largest element in X(j).  The
  97.              estimate is as reliable as the estimate for RCOND, and is almost
  98.              always a slight overestimate of the true error.
  99.  
  100.      BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  101.              The componentwise relative backward error of each solution vector
  102.              X(j) (i.e., the smallest relative change in any element of A or B
  103.              that makes X(j) an exact solution).
  104.  
  105.      WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  106.  
  107.      RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
  108.  
  109.      INFO    (output) INTEGER
  110.              = 0:  successful exit
  111.              < 0:  if INFO = -i, the i-th argument had an illegal value
  112.  
  113. PPPPAAAARRRRAAAAMMMMEEEETTTTEEEERRRRSSSS
  114.      ITMAX is the maximum number of steps of iterative refinement.
  115.  
  116.  
  117.  
  118.  
  119.  
  120.  
  121.  
  122.  
  123.  
  124.  
  125.  
  126.  
  127.  
  128.  
  129.                                                                         PPPPaaaaggggeeee 2222
  130.  
  131.  
  132.  
  133.